For Florida State University’s participation in the Jump In Initiative, we surveyed the electronic media included in The Florida State University Science Education Curriculum Development Collection. This collection documents the creation and development of science teaching materials produced by the science education program at Florida State University from the 1960s to 2005. In particular, The Interactive Media Science (IMS) projects were the focus of our inventory. IMS pioneered the use of digital instructional media in the classroom. IMS was the first major project using multimedia funded by the National Science Foundation (NSF) and the resulting subprojects led the way in introducing a model of teaching using inquiry methodologies. Since their first product, Science Vision, IMS has developed and released four other products, two of which are available over the web. For more details, see the full finding aid for the collection here.

The majority of the collection is traditional paper-based materials, however a small but important subset includes all electronic media created and used in the development of the IMS projects. These materials take up an estimated 10-12 linear feet of the 98.25 linear feet of the overall collection. Currently, that material is listed at a box level in the finding aid; however there was no grasp of how much media was included in those boxes. There was concern about preservation of these materials as well as providing access to them. At present, FSU does not have the ability to allow researchers to access these materials as the majority consists of technology that is, for all intent, obsolete. FSU chose to use the Jump In Initiative to take a detailed inventory of the types of media included in the collection, estimate storage capacities and start the discussion on what we need to do with this material in the future and what resources that might take.

Two graduate assistants from Special Collections, Anna McCormick and Miranda Doran-Myers completed the survey of materials along with an intern at the Claude Pepper Library (where the collection is currently housed) Mary Turner as well as KimBoo York, an assistant at the Claude Pepper Library. The work was completed in three weeks. Krystal Thomas, digital archivist, put together the process for the survey and created a SharePoint folder for the data to be compiled and easily accessed by all involved. Thomas created an inventory spreadsheet for the project based on suggestions from the Manuscripts Repositories roundtable’s Jump In Initiative webpage as well as Inventory and Planning: The First Steps in Records Management (Suzanne Etherington and Ann Marie Przybyla, New York State Archives, 2003) and You’ve Got to Walk Before You Can Run: First Steps for Managing Born-Digital Content Received on Physical Media (Ricky Erway, OCLC, 2012).

The spreadsheet (see attachment) asked the surveyors to document eight different pieces of information if able. We were unable to access any of the media for this survey so any information recorded had to be gleaned from labels on the items themselves:

- Location recorded which box the item is located in. There are six boxes in the collection pertaining to the electronic media. During the survey, we received a small addition to the collection that was mostly hardware. This is listed as unprocessed under Location.
Type of Medium recorded what format the item was in. Formats found included 3.5" floppy disks, compact discs, slides, micro cassettes, mini digital audio tapes (DAT), mini digital video cassettes (DVC), VHS tapes, DVDs, EZ drives, Jaz disks, Zip drives, laser disks, 8mm magnetic tape and also various forms of hardware.

Storage Capacity was estimated using the chart provided in the Jump In Initiative’s Sample Inventory Template. If a format was not included on the chart, research was conducted for what would be a reasonable estimate. It was also assumed, since we were unable to access the items at this time, that the items were at full capacity though we are aware that is unlikely the case for every item in the collection.

A title was given to each item using any information that could be gleaned from the label affixed to the item.

Creator was listed as the collection title. It is possible we may be able to be more specific once we access the files on the media.

A date was recorded if one was listed on the item’s label. There was often a year recorded as each program had different release dates over the years and the media reflect those update releases.

A description of contents was provided so much as we could learn from the label attached to the item. Often these descriptions are just transcriptions of any writing on the item’s label. These often do not make sense so in the future, we should sit down with the donor or other programmers who originally worked with this media and try to decipher and learn more.

Access records which hardware/software might be required to access the item. This field is often blank since it was difficult to tell from the labels which operating system is needed to access the information. This is hopefully something we could learn from the donor and former programmers of the materials.

From these categories, we were able to discover that we hold an estimated maximum of 4380.3 GB (or 4.3 terabytes) of information on the electronic media in the FSU Science Education Curriculum Collection. The data are spread out over 1750 items, which includes all the media listed above. The collection holds several Apple IIE and Apple IIGS hardware systems and external hard drives but we were unable to estimate their storage capacity at this time. During the course of this survey, we also received an addition to the original collection and, through the help of the donor, attempted to access some of the programs. However, this was not a success and it has been determined that we will need to involve more people who are experts at accessing and using this older technology before beginning to access these materials. Once we can access the files, we will need to begin creating a plan to provide access to the materials moving forward. Creating an emulation environment is a possibility or providing and maintaining access to the raw files if at all possible.

Overall, the survey of the FSU Science Education Curriculum Collection brought to light our need to engage with this material now that we are aware of the substantial amount of material and its preservation needs. These types of electronic
media are fast becoming obsolete and risky to access on their original systems. We now need to examine our goals for the collection and decide how to proceed. It may involve seeking funds to bring in an external source that could successfully access, preserve and develop ways for us to provide access to these materials in the future.