
 1

AT Plugin Framework

 2

Purpose

● Allow for the addition of functionality and
customization without having to modify
the underlying core code.

Record
Objects

AT ClientUser Input

Plugin 1

Plugin 2

Plugin 3

AT Database

 3

Implementation

● JPF (Java Plugin Framework) - Open
source library for adding plugin support
to existing applications.

 (http://jpf.sourceforge.net/)
● XStream - Open source library which

allows for transparent storage of plugin
data to an AT database as XML.

 (http://xstream.codehaus.org/)

 4

Integration

● Menu Based Plugins - Integrated into
either the Import, Tools, and Plugin
Menus.

● Record Editor Plugins - Replaces the
built-in record editors.

● Embedded Plugins - Embedded within
the built-in record editors.

 5

In Menus

 6

As Editors

Record
Objects

 7

In Editors

 8

Why Use Plugins

● Ease of development
● Not tied to official AT release
● Easier code sharing
● Flexible data model
● Choice of license and distribution policy
● Investment protection

 9

Usage Examples

● Batch Editing

● Data Migration

● Web Publishing

 10

Batch Editing

● Hierarchal nature of the AT data model
means that a batch editor needs to
possess maximum flexibility in providing
editing options.

Series of Flat Documents Tree Graph

 11

Data Migration

● Given that institutions all have their own
methods of storing archival information,
data migration inherently requires
customize tools to read-in and normalize
the data for the AT.

data
files

database

Record
Objects

AT ClientImporter
Plugin

 12

Web Publishing

AT
Database

AT Record AT Client Viewer Plugin

Publisher Plugin

Saved
AT Records
and Index

AT Applet

AT on Users Desktop

AT Applet on Web Server

X

