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AT Plugin Framework
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Purpose

● Allow for the addition of functionality and 
customization without having to modify 
the underlying core code.
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Implementation

● JPF (Java Plugin Framework) - Open 
source library for adding plugin support 
to existing applications.

  (http://jpf.sourceforge.net/)             
● XStream - Open source library which 

allows for transparent storage of plugin 
data to an AT database as XML.

  (http://xstream.codehaus.org/)
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Integration

● Menu Based Plugins - Integrated into 
either the Import, Tools, and Plugin 
Menus.

● Record Editor Plugins - Replaces the 
built-in record editors.

● Embedded Plugins - Embedded within 
the built-in record editors.
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As Editors
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Why Use Plugins

● Ease of development
● Not tied to official AT release
● Easier code sharing 
● Flexible data model 
● Choice of license and distribution policy
● Investment protection
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Usage Examples

● Batch Editing

● Data Migration

● Web Publishing
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Batch Editing

● Hierarchal nature of the AT data model 
means that a batch editor needs to 
possess maximum flexibility in providing 
editing options.
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Data Migration

● Given that institutions all have their own 
methods of storing archival information, 
data migration inherently requires 
customize tools to read-in and normalize 
the data for the AT.
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Web Publishing
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