Fixating on Fixity — Is Your Choice of Checksum in Conflict with Your Climate Goals?

Preliminary findings of research by:
George Blood, owner
Steve Burns, developer
Jeff Chestek, chief audio tech
George Blood Audio/Video/Film/Data

Premis

- Users need to *trust* archives
- Ttrust means objects are *authentic*
- When preservation of the essence of the object is complete and declared authentic, it stops changing and becomes fixed
- To confirm a digital object has not changed, we use fixity
- Crytographic hashes, in the form of checksums, are the mechanism for confirming digital objects are not changed
- Unchanged digital objects are truthworthy

How hard can it be?

- Select a range of checksum types to compare
 - MD5, SHA256, SHA1, Okum, CRC32
- Set up some computers to compare
 - New, old, Mac, PC, Linux, cloud
- Try different storage
 - External spinning drive, SSD, NAS, SAN, cloud
- Gather sample files (does file size have an impact?)
 - Lots of small files, some medium-sized files, big files
- Write some scripts
- Find a partner to run the tests in a different environment
 - WGBH/AAPB is our partner
- Report results

Early challenges

- How to measure the power consumption?
 - We purchased inexpensive plug-in meters
 - Do we include the external drive?
 - If so, how do we allocate power consumption from remote storage (NAS)
- Low repeatability of tests
 - Wildly varying results when test were run several times
- Quickly discover how many tests are needed

How hard can it be?

- Select a range of checksum types to compare
 - MD5, SHA256, SHA1, Okum, CRC32
- Set up some computers to compare
 - New, old, Mac, PC, Linux, cloud
- Try different storage
 - External spinning drive, SSD, NAS, SAN, cloud
- Gather sample files (does file size have an impact?)
 - Lots of small files, some medium-sized files, big files
- Write some scripts
- Find a partner to run the tests in a different environment
 - WGBH/AAPB is our partner
- Report results

5 (checksum types)

x5 (computer types)

x5 (external storage)

x3 (file sizes)

x3 (multiple passes)

x2 (two partners)

= 2,250 test runs!

Simplification

- Limit tests to MD5s and SHA256
- Use new, out of the box, iMac M1
 - Disconnected from network, nothing else installed
- Measure power consumption of computer only
- Expand the data size from 100GB to looping for 24 hours
 - Averages many test passes
 - Generates power consumption values big enough to compare

A peak at the data set

Simplification — early results

- Repeatable test results!
- Confirmation of scripts and process
- Clarification of questions and next steps

• • •

Tests have expanded to

- External HDD vs SSD
- New computer vs old computer (aka "free hardware")
- Using different CLI apps and scripts to test speed of code

Preliminary findings

- Do not use an old computer
 - Carbon footprint is 100—200x greater than current power efficient CPUs
- SSDs leave spinning discs in the dust
 - May be 25x less carbon intensive
- File size does not meaningfully impact results
 - 1 video file of 100GB has the same results as thousands of smaller files of 100GB
- Surprise: SHA256 may have lower carbon footprint than MD5
 - The opposite of a starting assumption
 - Building tests to control for possible variables to confirm finding

Planning testing and goals - 1

- #1 Quantify and provide data to support recommendations for best strategy in different use cases
 - Small archive with one computer and external drives
 - Small institutions or depart with large, local RAID (Drobo, Synology, etc)
 - Large institutional repository
 - Cloud
- Expand tests to other OS platforms
- Package process to share
 - First to WGBH for peer review
 - For anyone to use

Planning testing and goals - 2

- Run tests on AVPreserve's Fixity Tool
 - Engage AVPreserve in discussion to test our methods and know their tool
- Quiescent tests
 - How much of the power is from a computer just being one vs. verifying checksums?
- Is it time and carbon efficient to download files from remote storage to a local SSD to verify the checksum?
- Publish results and share raw data
- Full presentation will be at the CLIR/NDSA/DLF in October

Additional information:

- george.blood@georgeblood.com
- On Facebook: George Blood LP
- On Instagram: @georgebloodlp
- Reports and PPTs at www.georgeblood.com
- CLIR/NDSA/DLF
 - Presentation in person at the 2022 Digital Preservation Conference in Baltimore, Maryland. The conference will be held October 12-13

